Using Machine Learning to Discover Latent Social Phenotypes in Free-Ranging Macaques
نویسندگان
چکیده
Investigating the biological bases of social phenotypes is challenging because social behavior is both high-dimensional and richly structured, and biological factors are more likely to influence complex patterns of behavior rather than any single behavior in isolation. The space of all possible patterns of interactions among behaviors is too large to investigate using conventional statistical methods. In order to quantitatively define social phenotypes from natural behavior, we developed a machine learning model to identify and measure patterns of behavior in naturalistic observational data, as well as their relationships to biological, environmental, and demographic sources of variation. We applied this model to extensive observations of natural behavior in free-ranging rhesus macaques, and identified behavioral states that appeared to capture periods of social isolation, competition over food, conflicts among groups, and affiliative coexistence. Phenotypes, represented as the rate of being in each state for a particular animal, were strongly and broadly influenced by dominance rank, sex, and social group membership. We also identified two states for which variation in rates had a substantial genetic component. We discuss how this model can be extended to identify the contributions to social phenotypes of particular genetic pathways.
منابع مشابه
Bayesian Machine Learning Approaches for Longitudinal Latent Class Modelling to Define Wheezing Phenotypes to Elucidate Environmental Associates
Accurate phenotypic definition of wheezing in childhood can lead to a greater understanding of the distinct physiological markers associated with different wheeze phenotypes. This paper looks at Bayesian machine learning approaches using Infer.NET to define wheeze phenotypes based on both parental questionnaires and General Practitioner data on patterns of asthma and wheeze consultation within ...
متن کاملDiffusion of latent semantic analysis as a research tool: A social network analysis approach
Latent Semantic Analysis (LSA) is a relatively new research tool with a wide range of applications in different fields ranging from discourse analysis to cognitive science, from information retrieval to machine learning and so on. In this paper, we chart the development and diffusion of LSA as a research tool using Social Network Analysis (SNA) approach that reveals the social structure of a di...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملTrust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic
Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...
متن کامل